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Current research focuses on new energy alternatives which could compete with the traditional energy
sources based on fossil fuels, and eventually diminish the consequences on climate. Recently, butanol
produced by ABE fermentation attracted more attention since its energy power is comparable to that
of gasoline. But some hurdles are involved in the establishment of this fuel as an immediate substitute
of fossil fuels, e.g. lower butanol concentration in the fermentation effluents and the expensive separation
steps to purify the effluent.
This work is the first to report the use of hybrid separation based on liquid-liquid extraction (LLX) com-

bined with dividing-wall column (DWC) technology for the purification of the ABE (acetone-butanol-
ethanol) mixture. The configurations proposed are the result of multi-objective optimization that aims
to find designs that fulfill the tradeoff between those objectives: cost minimization, reduce environmen-
tal impact, and increase controllability.
The downstream processing alternatives are designed and optimized by minimizing three objective

functions simultaneously: the total annual cost (TAC) as an economical index, the eco-indicator 99 as
an environmental function, and the condition number (CN) as control index. Among the four designs,
the scheme where only a reboiler is included showed the best economic performances and relatively
good values of condition number and eco indicator 99.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

Liquid biofuels obtained by biomass fermentation have attracted
much attention because of their environmental-friendly origin.
Although bioethanol enjoys currently mature knowledge, butanol
is considered nowadays a promising liquid biofuel due to its prop-
erties such as higher energy content and lower volatility (as com-
pared to ethanol), high flash point to ensure safe handling and
transportation, and the possibility of blending it with gasoline in
any percentage without any engine modification [1]. Fermentation
of lignocellulosic material as substrate to produce butanol with the
use of Clostridium strains seems assertive since such material can
be obtained from agricultural residues [2,3]. During the past two
decades, both experimental and computational engineering tried
to enhance the performance of the ABE fermentation. Those
attempts consider the development of new strains to upgrade pro-
duct yield (due to the butanol inhibition of Clostridium strains), and
new downstream processing alternatives that improve the effi-
ciency of separation and purification [4]. The main drawback of fer-
mentation processes is the production of diluted effluents that
require energy intensive separation and purifications steps, which
account for 60–80% of the total costs of the process [5].

In this respect, a combination of a decanter (exploiting the liq-
uid phase split) or liquid-liquid extraction (LLX) combined with
advanced distillation technologies, could be used to increase the
concentration of the diluted stream and then purify the main pro-
duct [5,6]. Other separation techniques that could be used include
adsorption, gas stripping, vacuum flash, reverse osmosis (RO), per-
straction, and pervaporation. But most of these technologies are
still in the research and development phase, while LLX and distil-
lation are proven already in biorefineries. Among the distillation
technologies, diving wall column (DWC) is a promising alternative
to separate and purify effluents produced by fermentation [7].
Owing to its high thermodynamic efficiency, DWC is a great exam-
ple of heat-integrated distillation columns with many industrial
applications [8–10].
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Nomenclature

ABE acetone-butanol-ethanol
LLX liquid-liquid extraction
RO reverse osmosis
DWC dividing-wall column
CTM capital cost
CUT Cost of Services
TAC total annual cost
LCA Life Cycle Assessment
CN condition number
DE differential evolution
DETL Differential Evolution with Tabu List
EI99 eco-indicator 99

MINLP mixed integer nonlinear programming
SVD singular value decomposition
VBA Visual Basic
DDE Dynamic Data Exchange
r singular values
R Diagonal Matrix
c condition number
U Direction of the Process Outputs
V Direction of the Process Inputs
TL Taboo List
TS Taboo Search
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However, the optimal design of any kind of thermally coupled
systems for multi-component separation is a non-linear and poten-
tially non-convex problem [11]. Nonetheless, optimization tech-
niques have shown key capabilities to improve several processes.
In particular, stochastic optimization algorithms proved to be able
to handle this kind of complex problems, since it is not necessary
to have explicit data of the model or its derivatives [12]. Many pre-
vious studies focused on reducing the economic impact of separa-
tion processes [13], and the inclusion of more objectives has been
considered from a multi-objective optimization point of view [14].
However, the control properties are not considered in a first design
stage, as control issues are addressed and solved in a separate and
sequential procedure. This design-then-control methodology may
present some drawbacks, such as infringement of dynamic restric-
tions, over-design and low performance, so a global performance of
any proposed design cannot be guaranteed [15]. The dynamic con-
sequences lead to separation alternatives that would not be flexi-
ble on operative performance. In this manner, the variation of
product specification and raw materials demands an appropriate
control strategy able to address those issues. Under this scenario,
a solution strategy requires the inclusion of several goals evaluated
at the same time. This strategy must be capable of handling eco-
nomic and environmental issues, along with integrating a process
control strategy already at the design stage.

The idea of integrating design and control is not actually new,
several authors have proposed to assess the dynamic properties
with some index-based methods [16–18]. Those optimization
strategies considered several ideas. For example, Luyben et al.
[19] considered the dynamic control performance in the form of
matrix norms or dynamically calculated error, this framework
being solved as a mixed-integer optimal control problem. Seferlis
and Grievink [20] developed an optimization strategy based on
economic index and static controllability. Nevertheless, those con-
trollability indexes were treated as constraints of the mathematical
optimization problem or considered in the economic objective
function through the weighted functions. Recently, Vazquez-
Castillo et al. [21] proposed the inclusion of the condition number
(CN) of the relative gain matrix in an operative nominal point, as
control index to measure the natural dynamic properties of distil-
lation columns. This control index allowed the evaluation of the
dynamic properties considering a full and rigorous model of a sep-
aration process. Moreover, CN is a proper index to assess qualita-
tively the control properties of any design in steady-state. This
index has been used in chemical processes for achieving such pur-
pose [17,22]. It is therefore clearly necessary to propose a general
method to evaluate simultaneously those economic, environmen-
tal and control capabilities of any proposed design.

This work is the first to propose several novel downstream pro-
cessing schemes for the ABE fermentation, based on a combination
of liquid-liquid extraction and dividing wall column. These new
hybrid alternatives (LLX + DWC) were designed and evaluated
under a robust optimization process by means of a hybrid opti-
mization algorithm – Differential Evolution with Taboo List (DETL)
– considering three simultaneous objective functions, the total
annual cost (TAC), the eco-indicator 99, and the condition number
as economic, environmental and controllability indexes, respec-
tively. This optimization methodology allows including at early
stage design conflicting objective functions trying to obtain process
designs that are cheaper, environmentally friendly, and with good
dynamic properties designs.
2. Problem statement

Two major problems are associated with butanol fermentation
(ABE process): 1. very low concentration and yield owing to the
severe butanol toxicity to microorganisms, which results in a dilute
product and large disposal loads, and 2. high energy-demand
recovery of butanol from the dilute fermentation broth. In this
respect, enhancing the production of biobutanol would consist of
two strategies: (1) a biological approach (engineering Clostridias
metabolic pathways for butanol hyper-production), and (2) opti-
mization of more efficient separation processes [23] (such as the
ones described in the present study). Suitable process designs need
to increase the yield of products, minimize the energy consump-
tion and environmental impact.

To solve the problem of expensive downstream processing in
the ABE fermentation, this study proposes a multi-objective opti-
mization approach using three objective functions evaluated
simultaneously: the total annual cost (TAC), eco-indicator 99, and
the condition number as the economic, environmental impact
and controllability indicators, respectively. However, there is a lack
of strategies concerning the inclusion (at early design stages) of
environmental, economic and controllability indexes that guaran-
tee eco-efficient designs with good controllability properties. The
enforcement of a multi-objective optimization approach provides
a wider picture of the process performance, the role of all the
design variables, and the objective functions evaluated here.
3. Case-study description

Recently Rong and Turunen [24] proposed a set of intensified
DWC for quaternary mixtures, while Vazquez-Castillo et al. [25]
evaluated those designs under a robust optimization strategy con-
sidering a quite complete set of mixtures considering a wide range
of relative volatility differences and feed composition. Their results
highlighted some designs which exhibited promising results con-
cerning the economic evaluation. Moreover Sánchez-Ramírez
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et al. [13] reported that the inclusion of a liquid-liquid extraction
column improves the separation of an ABE effluent since the
extracting agent is able to separate two azeotropes, homogeneous
(ethanol/water) and heterogeneous (butanol/water).

This study considers several hybrid designs combining a liquid-
liquid extraction column (using hexyl-acetate as mass separating
agent) and dividing wall columns, similar to those reported by
Vazquez-Castillo et al. [25] but evaluated under a multi-objective
optimization strategy using economic, environmental and control-
lability indexes respectively (see Fig. 1). In brief we take advantage
of simultaneous thermal coupling and heat integration as a process
intensification strategy to synthesize this separation process
schemes. First, the number of condensers and reboilers are reduced
introducing a thermal coupling in the streams of ‘no-products’
streams. This produces the heat-integrated thermally coupled con-
figurations. Then, the prefractionation column without a stream
with pure product in the heat-integrated thermally coupled config-
urations is incorporated into another column with dividing-wall.
This produces the intensified new distillation systems with a
reduced number of columns than heat-integrated thermally cou-
pled configurations [20]. All these design cases were simulated
by robust and thermodynamically rigorous Aspen Plus process
models. According to Van der Merwe et al. [26] and Chapeaux
et al. [27], the NRTL-HOC thermodynamic model was the most
accurate for calculating the physical properties of the components
used, at the specified conditions. All the binary interaction param-
eters related to the property model are available in the pure com-
ponents databank of the Aspen Plus process simulator. This was
validated against experimental data by Patrascu et al. [6].

Moreover, it was assumed that all process designs have the
same illustrative feed stream, as previously reported by Wu et al.
[28] (see Table 1), and hexyl-acetate was added as extractive agent.
The product purities specified in all processes are: biobutanol
>99.5 wt%, acetone >98 wt% and ethanol >95 wt% and over 98 wt
% recovery of ethanol, 99 wt% recovery of acetone and biobutanol,
and 99.9 wt% hexyl-acetate recovery, respectively.
Fig. 1. Analyzed schemes for
4. Optimization indexes and formulation

This section describes the optimization indexes and the multi-
objective optimization problem. The optimal conditions to operate
the downstream processing of the effluent from ABE fermentation
are of utmost importance to operate a competitive butanol biore-
finery. Those optimal conditions must take into account several
factors highlighting the economic and environmental performance,
but the integration of a control index leads to a large scale opti-
mization problem. The condition number was selected as control-
lability index considering that it has been already used in the
control properties of downstream processes [22,29,30]
4.1. Total annual cost calculation

The total annual cost (TAC) was selected as index that measures
the economic impact. To calculate the TAC, the method reported by
Guthrie [31] and further modified by Ulrich [32] was used. This
method estimates the cost of an industrial plant by means of equa-
tions published by Turton et al. [33]. The cost approximation of the
process was carried using Eq. (1):

TAC ¼ Capital costs
Payback period

þ Operating costs ð1Þ

Where the capital cost of the plant is calculated as the sum of
the capital cost of all units

Pn
i¼1CTM;i, and the operating cost as

the sum of all the cost services
Pn

j¼1Cut;j. A payback period of
3 years was used. Economic analysts often assume that the longer
it takes to recover funds, the more uncertain are the positive
returns. For this reason, they sometimes view payback period as
a measure of risk, or at least a risk-related criterion to meet before
spending funds. A company might decide, for instance, to under-
take no major expenditures that do not pay for themselves in, in
example, 3 years [34]. The plant is assumed to run 8500 h/year.
Also, the following costs for heating and cooling were taken into
biobutanol purification.



Table 1
Feed characterization for the biobutanol purification process (Wu et al. [28]).

Composition (mol%) Composition (wt%) Temperature (K) 322

Acetone 0.1128 0.1695 Vapor fraction 0
Biobutanol 0.0808 0.3018 Flow rate (kg�h�1) 45.3592
Ethanol 0.0043 0.0073
Water 0.80198 0.5214
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account: high-pressure steam (42 bar, 254 �C, $9.88/GJ), medium-
pressure steam (11 bar, 184 �C, $8.22/GJ), low-pressure steam
(6 bar, 160 �C, $7.78/GJ) and cooling water ($0.72$/GJ) [35].

4.2. Environmental impact calculation

The environmental impact was quantified using the Life Cycle
Assessment (LCA) principles by means of the eco-indicator 99
(EI99) [36]. This approach allows solving the eco-issues consider-
ing that the overall environmental impact is globally minimized.
The eco-indicator 99 is calculated as follow:

EI99 ¼
X
b

X
d

X
k2K

ddxdbbab;k ð2Þ

Where bb represents the total amount of chemical b released
per unit of reference flow due to direct emissions, ab;k is the dam-
age caused in category k per unit of chemical b released to the envi-
ronment, xd is a weighting factor for damage in category d, and dd
is the normalization factor for damage of category d. In the eco-
indicator 99 methodology, 11 impact categories are considered
[36] aggregated into three major damages categories: human
health, ecosystem quality, and resources depletion. In this work,
for eco-indicator 99 calculation the impact of three factors were
considered as most important in the ABE downstream processing:
steam (used in column reboiler), electricity (used for pumping) and
steel (to build distillation columns and accessories). The values for
those three factors are summarized in Table 2.

4.3. Controllability index calculation

The condition number is used as index to evaluate the control-
lability properties. Calculation of the condition number was carried
out by means of the singular value decomposition (SVD) of the rel-
ative gain matrix of the evaluated design at nominal point. In other
words, when a design accomplishes all restrictions, the singular
values are obtained before calculating the condition number. The
SVD is a numerical algorithm developed to minimize computa-
tional error involving in large matrix operations [37]. The singular
value decomposition of a matrix (K in example) outcome in three
component matrices according to the next equation [38]:
Table 2
Unit eco-indicator used to measure the eco-indicator 99 in both case studies
(Geodkoop and Spriensma [36]).

Impact category Steel
(points/kg)

Steam
(points/kg)

Electricity
(points/kWh)

Carcinogenics 6.320E-03 1.180E-04 4.360E-04
Climate change 1.310E-02 1.600E-03 3.610E-06
Ionising radiation 4.510E-04 1.130E-03 8.240E-04
Ozone depletion 4.550E-06 2.100E-06 1.210E-04
Respiratory effects 8.010E-02 7.870E-07 1.350E-06
Acidification 2.710E-03 1.210E-02 2.810E-04
Ecotoxicity 7.450E-02 2.800E-03 1.670E-04
Land Occupation 3.730E-03 8.580E-05 4.680E-04
Fossil fuels 5.930E-02 1.250E-02 1.200E-03
Mineral extraction 7.420E-02 8.820E-06 5.7EE-6
K ¼ URVT ð3Þ
Where: K is an n �m matrix, U is an n � n orthonormal matrix

called the ‘‘left singular vector”, V is an m �m diagonal of scalers
called the ‘‘singular values” and are organized as follow:
r1 > r2 > r3 . . .rm > 0. Note in terms of matrix operations both
U and V consists in a simple coordinate rotation. In matrix opera-
tion, the SVD calculates the rank and condition of a matrix and
maps geometrically the strengths and weaknesses of a set of equa-
tion [37].

The attractive and interesting point of the SVD in terms of con-
trollability is that when applied to a matrix which describes the
steady-state aspect of multivariable process, the singular vectors
and singular values have a very particular physic interpretation
described as follows [37]: K the steady-state gain matrix repre-
sents the physically scaled steady-state sensitivity of each process
sensor to change in each of the manipulated variable. U, the left
singular vectors supplies the most accurate coordinate system for
viewing the process sensors. In other words this coordinate system
is such that the first singular vector U1 indicates the easiest direc-
tion in which the system must be changed, while U2 is the next
easiest direction and so on. V the right singular vector indicates
the most accurate coordinate system for viewing the manipulated
variables, in such way is possible to know the combination of con-
trol actions which probably will has the most effect on the system.
R as the diagonal of the singular values, supplies the ideal decou-
pled gain of the open loop process. The ratio between the largest
singular to the smallest value is the condition number of the gain
matrix and is a direct measure of the difficulty of the decoupled
multivariable control problem [38].

The condition number is the ratio between the largest and the
smallest singular value and is used to measure the ‘‘condition” of
a set of equations.

c ¼ rmax=rmin ð4Þ
In terms of controllability, a large condition number indicates

that it will be inconvenient to satisfy the entire set of control objec-
tives (notwithstanding the control strategy to be used) [37]. Phys-
ically the condition number represents the ratio of the maximum
and minimum open-loop, decoupled gains of the system. A large
condition number suggests that the relative sensitivity of a system
in one multivariable direction is very poor [37].

In this work, the condition number of the relative gain matrix is
obtained in an open-loop control policy, each process design gen-
erates a relative gain matrix in a nominal state. The elements of
each matrix are calculated considering a disturbance in the manip-
ulated variable (reflux ratio, reboiler heat duty, side stream flow-
rate and so on). The magnitude of that perturbation was set as a
0.5% positive change in the values of those manipulated variables
on its nominal state. The impact of these perturbations is suffi-
ciently low that a first order response after perturbation can be
assumed. It is remarkable that the relative gain matrix is scaled
to consider changes of different order of magnitude in
perturbation.

A disadvantage of using the SVD technique is the dependence of
the system units used, since the SVD calculation will include the
effect of such units. For example, in this study we consider three



Table 3
Decision variables used in the global optimization process.

Type of variable

Number of stages Discrete
Amount of mass separating agent Continuous
Feed stages Discrete
Side stream stage Discrete
Side stream flow Continuous
Reflux ratio Continuous
Liquid and vapor interconnection flow Continuous
Stage of liquid and vapor Interconnection flow Discrete
Distillate rate Continuous
Diameter Continuous
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control variables, the mass purity of acetone, butanol and ethanol,
these variable are limited between 0 and 1. However, we also used
three manipulated variable, reflux ratio, bottoms flow rate and side
stream flow rate [37,39]. To eliminate this disadvantage, in this
work we propose to limit the manipulated variables, whereas the
maximum aperture of the control valves is twice the nominal value
of the steady state, so in principle the valves are open at 50%. In
this manner to build the relative gain matrix, the step change is
applied to the manipulated variable and divided by two to have
the same range of variation in both closing and opening operation
in the control valves. This consideration allows us to relate the
amount of change of the manipulated variable with the magnitude
of change in control valve which only must vary between 0 and
100%. With this form of scaling it is achieved simultaneously
dimensionless standardization and manipulated variables, the
term 1/2P has been included in Eq. (5) in order to accomplish this
purpose. Eq. (5) represents the relative gain matrix for the distilla-
tion sequences.

K11 K12 K13

K21 K22 K23

K31 K32 K33

2
64

3
75 ¼

x
v1
C1�xsp

C1
1
2P

x
v2
C1�xsp
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1
2P

x
v1
C2

�xsp
C2

1
2P

x
v2
C2

�xsp
C2

1
2P

x
v3
C2

�xsp
C2

1
2P

x
v1
C3�xsp

C3
1
2P

x
v2
C3�xsp

C3
1
2P

x
v2
C3�xsp

C3
1
2P

2
666664

3
777775

ð5Þ

The elements in the left side of Eq. (5), Kij, are the relative gain
matrix. Furthermore, the elements of the first row in the right side
correspond to the differences among the mass purity of the compo-
nent A in the nominal state xspA ,and the mass purities after distur-

bance p. xV1
A is the mass purity of component A after disturbance

in manipulated variable 1, xV2
A is the mass purity of component A

after disturbance in manipulated variable 2, xV3
A is the mass purity

of component A after disturbance in manipulated variable 3.

4.4. Multi-objective optimization problem

In the schemes shown in
Fig. 1, the target is the simultaneous minimization of the total

annual cost (TAC), the environmental impact measured through
eco-indicator 99 (EI99) and the condition number (CN). The mini-
mization of these three objectives is subject to the required recov-
eries and purities in each product stream.

minðTAC; Eco99; cÞ ¼ f ðNtn;Nfn;Rrn; Frn; Fln; Fvn;DcnÞ
Subject to x

!
m > y

!
m

ð6Þ

where Ntn are total number of column stages, Nfn is the feed stage in
column, Rrn is the reflux ratio, Frn is the distillate flux, Fln is the inter-
connection liquid flow, Fvn is the interconnection vapor flow, Dcn is
the column diameter; ym and xm are the vectors of obtained and
required purities for the mth components, respectively. Each vari-
able in Eq. (6) has its own role on the objective function calculation.
In example, to calculate the total annual cost, it is necessary to sum
the capital cost and operating costs. The capital cost depends
directly from the column size. With the amount of columns stages
it is possible to calculate the high of the column and so on. More-
over if our model is complete with all degrees of freedom such as
reflux ratio and distillate flux, we obtain as result the reboiler/con-
denser duty which allows to calculate those operating cost. On the
other hand, in the Eco indicator 99 calculation we consider the
impact of steam for heating, steel for equipment building and elec-
tricity for pumping. So, with the amount of stages, high of the col-
umn, reboiler/condenser duty it is possible to calculate the
environmental impact. As concern to the controllability index, note
that it is necessary to apply several disturbances in those optimiza-
tion variables, so as product of those disturbances it is possible to
obtain the mass purity of the interest component to eventually cal-
culate the condition number as controllability index. This multi-
objective minimization problem has 25 continuous and discrete
variables. Note that the product streams flows are manipulated
and the recoveries of the key components in each product stream
must be included as a restriction/constraints for the optimization
problem. Table 3 shows all the decision variables that were used
in the process optimization. The physical considerations about the
column and equipment size were taken as average industrial mea-
surements concerning distillation column designs [40]. In this work
we consider three variables to be used for the control test (the mass
purities of acetone, ethanol and butanol) and three manipulated
variables (the distillate flow, the side stream flow and the reboiler
duty). Note that the size of relative gain matrix is 3 by 3.

5. Global optimization methodology

Stochastic optimization algorithms have proven capable of solv-
ing complex optimization problems formulated as mixed integer
nonlinear programming (MINLP) models and potentially non-
convex. Note that this type of algorithm has been also used to
design and optimize complex schemes [41,42]. Stochastic algo-
rithms can solve robustly the optimization problem with a reason-
able computational effort. Moreover, they require only calculation
of the objective function and can be used without problem
reformulation.

Among stochastic optimization algorithms, Differential Evolu-
tion with Tabu List (DETL) has been used in the optimization and
design of complex schemes, by Abbas et al. [43]. DETL has its basis
in natural selection theory, similar as genetic algorithms. Initially,
differential evolution (DE) method was proposed by Storn et al.
[44] to solve single objective optimization problems over continu-
ous domains. Afterward, Madavan et al. [45] adapted DE for solving
multi-objective optimization problems. Basically, DE algorithm
consists of four steps: initialization, mutation, crossover, evalua-
tion, and selection [46]. As a brief description, in the initialization
step the algorithm search in a D-dimensional space RD, so the ini-
tialization of a population starts by randomly generating real-
valued parameter vectors. Each vector of a generation G, known
as genome/chromosome is a candidate solution for the optimiza-
tion problem, represented as:

X
!

i;G ¼ ½X1;i;G;X2;i;G;X3;i;G; . . . ;XD;i;G� ð7Þ
For each parameter involved in the optimization problem there

may be a range to limit those vectors proposed. The initial popula-
tion (at G = 0) should cover this range by prescribing minimum and

maximum boundaries X
!

i;min ¼ ½X1;i;min;X2;i;min;X3;i;min . . . ;XD;i;min� and
in such way that the initialized jth component of the ith vector is
described as:

xj;i;0 ¼ xj;min þ randi;j½0;1� � ðxj;max � xj;minÞ ð8Þ
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In Eq. (8), the function randi,j is uniformly distributed between 0 and
1, and is instantiated independently for each component of the i-th
vector [47].

Regarding to the mutation step, the meaning is indeed similar
to biological meaning, mutation is seen in this case as a change
or perturbation with a random element. The vector produced by
mutation is called trial vector. Initially, is necessary to start from
a parent vector (named target vector) of the current generation, this
parent vector is muted by the differential mutation operation to
generate a donor vector, finally an offspring formed by recombin-
ing the donor with the target vector we obtain the trial vector. In
other words, to create the donor vector, three distinct parameters,

X
!

ri1
;X
!

ri2
and X

!
ri3
are sampled randomly from the current population

and the sub-index ri1; r
i
2 and ri3 are mutually exclusive integers ran-

domly chosen from the range [1, population size]. We can write the
process as follows:

V
!

i;G ¼ X
!

rI1;G
þ F � ðX

!
ri2;G

� X
!

ri3;G
Þ ð9Þ

In the crossover step, the target vector exchanges its compo-
nents with the target vector under this operation to form the trial

vector U
!

i;G ¼ ½u1;iG;u2;iG;u3;iG; . . . ;uD;iG�. The DE algorithms can use
two kind of crossover methods, exponential (also named two-
point modulo) and binomial (also named uniform) [47]. In expo-
nential crossover, it is necessary to choose randomly an integer n
and L among the range [1, D]. Those integers acts as starting point
in the target vector, from where the crossover or exchange of com-
ponents with the donor vector starts. So, the trial vector is obtained
as [47]:

uj;i;G ¼ v j;i;G for j ¼ hniD hnþ 1iD;...;hnþ L� 1iD
xj;i;G for all other j 2 ½1;D� ð10Þ

Where the angular brackets h�iD denote a module function with
modulus D. On the other hand, binomial crossover is carried out on
each of the D variables whenever a randomly generated number
between 0 and 1 is less or equal than crossover value Cr. The oper-
ation may be explained as follow:

uj;iG ¼ uj;iG if ðrandi;j½0;1� 6 Cr o j ¼ jrandÞ
xj;i;G if ðrandi;j½0;1� > Cr y j–jrandÞ

�
ð11Þ

Concerning the selection step, in order to keep the population
size as a constant number over subsequent generation, the selec-
tion step determine if the target or the trial vector survives from
the generation G to the next generation G + 1. The selection opera-
tion is described as:

X
!

i;Gþ1 ¼ U
!

i;G if f ðU
!

i;GÞ 6 f ðX
!

i;GÞ
X
!

i;Gþ1 ¼ X
!

i;G if f ðU
!

i;GÞ > f ðX
!

i;GÞ
ð12Þ

Where f ðX
!
Þ is the objective function to be minimized/maxi-

mized. Hence, if new trial vector has equal or lower value of the
objective function, it replaces the corresponding target vector in
the next generation, in another way the target is retained in the
population.

On the other hand, Taboo List concept (TL) proposed by Glover
et al. [46] and Taboo Search (TS) is included to avoid the revisit of
search space by keeping a record of visited points. TL is randomly
initialized at initial population and continuously updated with the
newly generated trial individuals. This taboo check is carried out in
the generation step to the trial vector, and the new trial individual
is generated repeatedly until it is not near to any individual in the
TL. In this manner the objective functions are evaluated for this
new trial individual. The total trial individuals NP are generated
by the repetition of above steps. The newly generated NP trial vec-
tors are combined with the parent population to form a combined
population with total 2NP individuals. This combined population
undergoes non-dominated sorting and ranking accordingly. Indi-
viduals with the same non-dominated rank are further ranked on
the basis of crowding distance. The first (best) NP individuals are
used as the population in the subsequent generation [48].

To perform the global optimization a hybrid platform linking
Aspen Plus, Microsoft Exceland Matlab was used. Inside Microsoft
Excel, the DETL algorithm is written by means of Visual Basic (VBA)
and the entire model of the separation process is rigorously mod-
eled in Aspen Plus. As a brief description of the optimization pro-
cess, initially the vector of decision variables is sent from
Microsoft Excel to Aspen Plus by means of DDE (Dynamic Data
Exchange) through COM technology. Those values are assigned to
process variables in Aspen Plus modeler. After converging the sim-
ulations, Aspen Plus returns to Microsoft Excel a resulting vector
containing output data (reboiler heat duty, total stages, etc.). Then
disturbances are applied on the manipulated variables and new
simulations are executed, after these simulations are completed
the differences among the components mass purity in the nominal
state and the components mass purity after the disturbances are
estimated, these data along with the necessary data to calculate
the condition number are sent from Microsoft Excel to Matlab.
Finally, Microsoft Excel analyzes the objective function values
and proposes new values of decision variables according to the
DETL method. In this work, the following parameters for the opti-
mization method have been used: 200 individuals, max. 500 num-
ber of generations, a taboo list of 50% of total individuals, a taboo
radius of 1 � 10�6, 0.8 and 0.6 for crossover probability and the
mutation factor, respectively. These parameters were obtained
from the literature and tuning process via preliminary calculations
[49].The tuning process consists of performing several runs with
different number of individuals and generations, in order to detect
the best parameters that allow obtaining the better convergence
performance of the DETL method.
6. Results and discussion

This section presents the main results of the simultaneous eval-
uation of the multi-objective function. The optimization fulfills all
constrains related to purity and recovery. Before the optimization
was performed, all base case designs were modeled and simulated
in Aspen Plus using the rigorous RADFRAC unit. Hence all process
schemes were robustly designed taking into account the complete
set of MESH equations (mass balances, equilibrium relationships,
summation constraints, and energy balance).

Figs. 2–4 show the convergence behavior of the objective func-
tions after the optimization. All Pareto fronts were obtained after
100,000 evaluations, as afterward the vector of decision variables
did not produce any meaningful improvement. It was assumed
that the DETL algorithm achieved the convergence at the tested
numerical terms and thus the results reported here correspond
to the best solution obtained.

Although in this work three objective functions were evaluated
at the same time, for a better understanding of the Pareto fronts we
presented first a Pareto front with only two objective functions.
Fig. 2 shows the Pareto front evaluating the total annual cost and
the condition number. Based on this figure, it is clear that scheme
2 showed the lowest economic impact in comparison with the
other three schemes. But in Fig. 2 a clear tendency is observed
when both objective functions are evaluated, when the TAC is min-
imized the control properties measured by the condition number
gets worse. In other words, the lowest values of condition number



Fig. 2. Pareto front between TAC and condition number for all biobutanol
purification schemes.

Fig. 4. Pareto front between Eco-indicator 99 and Condition Number for all
biobutanol purification schemes.
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(i.e. meaning a good dynamic behavior) are obtained at the highest
TAC values.

Among all schemes presented in Figs. 2–4, a design was selected
for each scheme, for which both objective functions reach a mini-
mum (see highlighted point in Fig. 2). All the variables and param-
eters for those schemes are presented in Tables 4–7. The selection
of those points was carried out considering that actually a feasible
zone exists where all objective functions are at minimum, accord-
ing to the study of Martinez-Iranzo et al. [50]. Taking into account
the analysis for Fig. 2, and considering the variables and parame-
ters shown in Tables 4–7, it is evident that the cheapest alternative
is scheme 2. This was obtained considering the lowest number of
theoretical of equilibrium stages, but the reflux ratio is also the
highest of the four schemes. Although the reboiler duty of this
scheme is about the same as the rest, note that only one reboiler
is used which minimizes the auxiliary equipment cost. Conversely,
scheme 4 is the most expensive one, as this process alternative
requires the largest amount of heat duty and a larger column diam-
eter, thus having a negative direct impact on the TAC.

Regarding to the controllability, high TAC values are related
with low condition number values (meaning that built-in control-
lability has its cost). DWC are known to have adequate controlla-
bility [51]. Among all alternatives, scheme 4 showed the lowest
condition number, which means it has the best controllability
properties. Observing the parameters from Table 7, scheme 4 has
larger column diameters and largest heat duty (e.g. high boil-up
ratio and reflux ratio) and this allows the design to reject larger
disturbances. In terms of the main difference in CN between the
Fig. 3. Pareto front between TAC and Eco-indicato
best and worst schemes, the position of the DWC in the process
seems to affect the controllability. Scheme 4 (lowest CN) is the only
scheme with the DWC positioned as the first separation unit,
unlike the other three schemes where the DWC is used as the sec-
ond separation unit. This issue has been previously discussed by
Lucero-Robles et al. [52].

Regarding Fig. 3, where TAC is presented jointly with the Eco-
indicator 99, the tendency is that for cheaper schemes EI99
increases as well. The most balanced solution considering only
these two objectives would be scheme 3, since its environmental
impact is the lowest and the TAC value is second best (after scheme
2). With the largest TAC, scheme 4 showed also the largest envi-
ronmental impact, since this scheme has largest energy require-
ments and large equipment that increases the use of steel. This
behavior shown in Fig. 3 represents the conflicting targets along
the optimization. The upper zone in the Pareto front is obtained
by designs which preferably include the largest number of stages,
the largest diameter of column but the lowest heat duty (because
of the well-known relation among those variables) – these combi-
nations produced the highest TAC value but the smallest eco-
indicator 99. The lower area of the Pareto front consists of designs
that include a low number of stages, the smallest column diameter,
but the largest heat duty – which produced the lowest TAC but the
highest eco-indicator 99. At the middle of both zones, it can be
assumed that the minimum values of both objective functions
coexists, so it includes designs with average variables between
both zones, which is reflected in the TAC and eco-indicator 99
values.
r 99 for all biobutanol purification schemes.



Table 4
Design parameters and performance indexes for Scheme 1.

Quantity Extractor Column 1 Dividing Wall column

Prefractionator Main Column

Number of theoretical stages 5 27 34 62
Reflux ratio – 0.3492 – 28.525
Feed stage 1 15 19 –
Interlinking stages 1/1 29/55
Solvent feed stage 5 – – –
Side stream stage – – – 49
Column diameter (m) 0.335 0.287 0.296 0.2907
Operative pressure (kPa) 101.353 101.353 101.353 101.353
Distillate flowrate (kg�h�1) – 34.425 – 7.703
Side stream flowrate (kg�h�1) – – – 0.328
Liquid split ratio rL (kg�kg�1) – – 0.1772 –
Vapor split ratio rV (kg�kg�1) – – 0.0882 –
Solvent flowrate (kg�h�1) 708.549 – – –
Solvent makeup (kg�h�1) 0.708 – – –
Condenser duty (kW) – 0 – 32.44
Reboiler duty (kW) – 64.6809 – 26.81
Total Annual Cost ($/y) 253089
Eco-indicator 99 (points/y) 15972
Condition Number 2.65

Table 5
Design parameters and performance indexes for Scheme 2.

Quantity Extractor Column 1 Dividing Wall column

Prefractionator Main Column

Number of theoretical stages 5 35 14 46
Reflux ratio – 16.706402 – 34.675
Feed stage 1 18 10 –
Interlinking stages 35/35 8/26
Solvent feed stage 5 – – –
Side stream stage – – – 17
Column diameter (m) 0.335 0.295 0.365 1.023
Operative pressure (kPa) 101.353 101.353 101.353 101.353
Distillate flowrate (kg�h�1) – 7.704 – 0.312
Side stream flowrate (kg�h�1) – – – 13.694
Liquid split ratio rL (kg�kg�1) – – 0.6673 –
Vapor split ratio rV (kg�kg�1) – – 0.4121 –
Solvent flowrate (kg�h�1) 708.549 – – –
Solvent makeup (kg�h�1) 0.709 – – –
Condenser duty (kW) – 19.525 – 15.254
Reboiler duty (kW) – 0 – 84.313
Total Annual Cost ($/y) 238783
Eco-indicator 99 (points/y) 14583
Condition Number 24.73

Table 6
Design parameters and performance indexes for Scheme 3.

Quantity Extractor Column 1 Dividing Wall column

Prefractionator Main Column

Number of theoretical stages 5 26 33 61
Reflux ratio – 1 – 12.939
Feed stage 1 14 20 –
Interlinking stages 35/35 24/53
Solvent feed stage 5 – – –
Side stream stage – – – 49
Column diameter (m) 0.335 0.301 0.312 0.297
Operative pressure (kPa) 101.353 101.353 101.353 101.353
Distillate flowrate (kg�h�1) – 21.686 – 7.7
Side stream flowrate (kg�h�1) – – – 0.3262
Liquid split ratio rL (kg�kg�1) – – 0.3018 –
Vapor split ratio rV (kg�kg�1) 0.8748
Solvent flowrate (kg�h�1) 708.549 – – –
Solvent makeup (kg�h�1) 0.708 – – –
Condenser duty (kW) – 7.646 – 15.309
Reboiler duty (kW) – 66.281 – 15.752
Total Annual Cost ($/y) 246434
Eco-indicator 99 (points/y) 14189
Condition Number 6.63
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Table 7
Design parameters and performance indexes for Scheme 4.

Quantity Extractor Dividing Wall column Column 2

Prefractionator Main Column

Number of theoretical stages 5 19 58 35
Reflux ratio – – 7.695 16.706
Feed stage 1 11 – 6
Interlinking stages 30/50 58/58
Solvent feed stage 5 – – –
Side stream stage – – 47 –
Column diameter (m) 0.335 1.819 1.484 0.295
Operative pressure (kPa) 101.353 101.353 101.353 101.353
Distillate flowrate (kg�h�1) – – 0.312 7.704
Side stream flowrate (kg�h�1) – – 0.32966374 –
Liquid split ratio rL (kg�kg�1) – 0.4711 – –
Vapor split ratio rV (kg�kg�1) – 0.2888 – –
Solvent flowrate (kg�h�1) 708.549 – –
Solvent makeup (kg�h�1) 0.709 – – –
Condenser duty (kW) – – 13.218571 62.406
Reboiler duty (kW) – – 0 135.685
Total Annual Cost ($/y) 277383
Eco-indicator 99 (points/y) 23669
Condition Number 2.41

Fig. 5. Pareto front between TAC, Eco-indicator 99 and Condition Number for all
biobutanol purification schemes.
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Fig. 4 shows the Pareto front for the condition number and eco-
indicator 99. As reminder, the eco-indicator 99 calculations con-
sider the impact of steam, steel and electricity – among these
impact factors the steam production is themost weighted (Table 2).
Consequently, in Fig. 4 the highest value of eco-indicator 99 corre-
sponds to scheme 4 (highest energy use, but lowest condition
number). This behavior is consistent with previous results, where
a direct relation was assumed between the energy use and the con-
dition number values. However, scheme 2 (lowest TAC) apparently
could be the scheme with the lowest environmental impact since
one can assume that the cheapest alternative has the lowest
energy usage. Nonetheless, Figs. 3 and 4 confirm the contrary.
The slight difference in eco-indicator 99 between scheme 2 and
scheme 3 is due to the size of diameter on each column (see Tables
4–7) since the steel to build all equipment is also included in EI99.

The 3-D Fig. 5 shows the evaluation of the optimization carried
out by evaluating all three objective functions at the same time.
Clearly, there are some conflicts to be solved during optimization.
To minimize the TAC, the optimization method is always searching
for the lowest energy use and at the same time the lowest number
of stages and smaller diameters (which actually are in conflict with
each other). However, the tendency of the Pareto front shows that
with cheaper and smaller equipment the control properties get
worse. Hence it is necessary to find a trade-off between those
two objective functions. The condition number is related to the size
of the column and energy usage to purify the mixture, but if those
variable values increase then the environmental impact increases
too, so a balance of those objectives is needed. In other words,
the columns size, energy use and design variables for those three
objective functions are in conflict. The crowded zone in Fig. 5 rep-
resents the most feasible zone where the three objective functions
find a trade-off solution.

Concerning the total annual cost, scheme 2 allows savings of
about 4%, 6% and 18% as compared to scheme 3, 1 and 4, respec-
tively. In terms of control properties, scheme 4 showed the best
controllability index, improving with 8%, 65% and 90% as compared
to scheme 1, 3 and 2, respectively. Regarding the environmental
impact, scheme 3 showed the lowest impact with 3%, 11% and
47% reduction as compared to the scheme 2, 1 and 4, respectively.
The analyzed schemes 1–4 show a specific energy use of 24.54,
22.19, 21.59, 35.73 MJ per kg butanol, respectively (see Fig. 6 for
a complete mass/energy balance scheme). In this respect, scheme
3 has the best performance. As preliminary conclusion the intensi-
fied systems are always aimed to improve energy efficiency, how-
ever for the current intensified systems studied, the higher savings
in TAC, the poorer the dynamic response. So, in the continuous



Fig. 6. Mass/energy balances for all analyzed schemes.
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search to find better values for condition number, some other ener-
getic or economic indexes are sacrificed and vice versa. This behav-
ior agrees up to certain extent with the literature [53–55]: highly
intensified systems (aiming at minimizing energy consumption
under specific designs) imply a high degree of nonlinearity and
interaction between variables, and loss of control degrees of free-
dom that restrict the operating conditions flexibility of the system,
so the feasibility to find a good dynamic behavior zone it depends
totally of a correct addressing as concern to energy consumption .
7. Conclusions

The hybrid schemes proposed in this work were evaluated
using multi-objective optimization with three functions: total
annual cost (TAC), the eco-indicator 99 and the condition number
representing the economic, environmental and controllability
indexes, respectively. Scheme 2 proved to have the most balanced
design among the four schemes evaluated, as it showed the lowest
TAC values, as well as relatively low condition number and eco-
indicator 99 values. It was also observed that the column size
and energy use affect directly the controllability, economic and
environmental impact indexes.

The optimal solution found is a trade-off between those charac-
teristics, column size and energy use which should be not so large
(to minimize TAC and eco-indicator 99 respectively) but suffi-
ciently high for good controllability properties. In general, this
design methodology allows the designer to choose the right option
considering more complete scenarios taking into account not only
the economic and environmental impact, but also having a prelim-
inary measure of the controllability properties. This kind of
research efforts, combined with results of other research areas,
can lead to a profitable ABE fermentation process able to compete
with traditional ways to produce biobutanol fuel.
References

[1] S.Maiti, G. Gallastegui, S.J. Sarma, S.K. Brar, Y. Le Bihan, P. Drogui, et al., A re-look
at the biochemical strategies to enhance butanol production, Biomass Bioenergy
94 (2016) 187–200, http://dx.doi.org/10.1016/j.biombioe.2016.09.001.

[2] X. Mu, W. Sun, C. Liu, H. Wang, Improved efficiency of separate hexose and
pentose fermentation from steam-exploded corn stalk for butanol production
using Clostridium beijerinckii, Biotechnol. Lett. 33 (2011) 1587–1591, http://
dx.doi.org/10.1007/s10529-011-0598-4.

[3] N. Qureshi, B.C. Saha, M.A. Cotta, Butanol production from wheat straw
hydrolysate using Clostridium beijerinckii, Bioprocess Biosyst. Eng. 30 (2007)
419–427, http://dx.doi.org/10.1007/s00449-007-0137-9.

[4] J. Liu, M. Wu, M. Wang, Simulation of the process for producing butanol from
corn fermentation, Ind. Eng. Chem. Res. 48 (2009) 5551–5557, http://dx.doi.
org/10.1021/ie900274z.

[5] A.A. Kiss, J.P. Lange, B. Schuur, D.W.F. Brilman, A.G.J. van der Ham, S.R.A. Kersten,
Separation technology-Making a difference in biorefineries, Biomass Bioenergy
95 (2016) 296–309, http://dx.doi.org/10.1016/j.biombioe.2016.05.021.

[6] I. Patras�cu, C.S. Bîldea, A.A. Kiss, Eco-efficient butanol separation in the ABE
fermentation process, Sep. Purif. Technol. (2016), http://dx.doi.org/10.1016/j.
seppur.2016.12.008.

[7] A.A. Kiss, Novel applications of dividing-wall column technology to biofuel
production processes, J. Chem. Technol. Biotechnol. 88 (2013) 1387–1404,
http://dx.doi.org/10.1002/jctb.4108.

[8] A.A. Kiss, D.J.P.C. Suszwalak, Enhanced bioethanol dehydration by extractive
and azeotropic distillation in dividing-wall columns, Sep. Purif. Technol. 86
(2012) 70–78, http://dx.doi.org/10.1016/j.seppur.2011.10.022.

[9] R. Premkumar, G.P. Rangaiah, Retrofitting conventional column systems to
dividing-Wall Columns, Chem. Eng. Res. Des. 87 (2009) 47–60, http://dx.doi.
org/10.1016/j.cherd.2008.06.013.

[10] Ö. Yildirim, A.A. Kiss, E.Y. Kenig, Dividing wall columns in chemical process
industry: a review on current activities, Sep. Purif. Technol. 80 (2011) 403–
417, http://dx.doi.org/10.1016/j.seppur.2011.05.009.

[11] J.G. Segovia-Hernández, S. Hernández, Petriciolet A. Bonilla, Reactive
distillation: a review of optimal design using deterministic and stochastic
techniques, Chem. Eng. Process Process Intensif. 97 (2015) 134–143, http://dx.
doi.org/10.1016/j.cep.2015.09.004.

[12] E.Y. Miranda-galindo, J.G. Segovia-herna, S. Herna, A. Briones-ramı, Reactive
Thermally Coupled Distillation Sequences: Pareto Front (2011) 926–938,
http://dx.doi.org/10.1021/ie101290t.

[13] E. Sánchez-Ramírez, J.J. Quiroz-Ramírez, J.G. Segovia-Hernández, S. Hernández,
A. Bonilla-Petriciolet, Process alternatives for biobutanol purification: design
and optimization, Ind. Eng. Chem. Res. 54 (2015) 351–358, http://dx.doi.org/
10.1021/ie503975g.

http://dx.doi.org/10.1016/j.biombioe.2016.09.001
http://dx.doi.org/10.1007/s10529-011-0598-4
http://dx.doi.org/10.1007/s10529-011-0598-4
http://dx.doi.org/10.1007/s00449-007-0137-9
http://dx.doi.org/10.1021/ie900274z
http://dx.doi.org/10.1021/ie900274z
http://dx.doi.org/10.1016/j.biombioe.2016.05.021
http://dx.doi.org/10.1016/j.seppur.2016.12.008
http://dx.doi.org/10.1016/j.seppur.2016.12.008
http://dx.doi.org/10.1002/jctb.4108
http://dx.doi.org/10.1016/j.seppur.2011.10.022
http://dx.doi.org/10.1016/j.cherd.2008.06.013
http://dx.doi.org/10.1016/j.cherd.2008.06.013
http://dx.doi.org/10.1016/j.seppur.2011.05.009
http://dx.doi.org/10.1016/j.cep.2015.09.004
http://dx.doi.org/10.1016/j.cep.2015.09.004
http://dx.doi.org/10.1021/ie101290t
http://dx.doi.org/10.1021/ie503975g
http://dx.doi.org/10.1021/ie503975g


E. Sánchez-Ramírez et al. / Separation and Purification Technology 185 (2017) 149–159 159
[14] E. Sánchez-Ramírez, J.J. Quiroz-Ramírez, J.G. Segovia-Hernández, S. Hernández,
J.M. Ponce-Ortega, Economic and environmental optimization of the
biobutanol purification process, Clean Technol. Environ. Policy 18 (2016)
395–411, http://dx.doi.org/10.1007/s10098-015-1024-8.

[15] M. Zhou, L. Li, L. Xie, Y. Cai, H. Pan, Preparation of papers for IFAC conferences &
symposia: integration of process design and control using hierarchical control
structure, IFAC-Pap. Online 28 (2015) 188–192, http://dx.doi.org/10.1016/j.
ifacol.2015.08.179.

[16] A. Palazoglu, A multiobjective approach to design chemical plants with robust
dynamic operability, Comput. Chem. Eng. 10 (1986).

[17] A.M. Lenhoff, M. Morari, Design of resilient processing plants-I Process design
under consideration of dynamic aspects, Chem. Eng. Sci. 37 (1982) 245–258,
http://dx.doi.org/10.1016/0009-2509(82)80159-0.

[18] A. Palazoglu, Design of chemical plants with multiregime, Comput. Chem. Eng.
11 (1987) 205–216.

[19] M.L. Luyben, The interaction of design control-1. A multiobjective framework
and application to binary distillation synthesis, Comput. Chem. Eng. 18 (1994)
933–969, http://dx.doi.org/10.1016/0098-1354(94)E0013-D.

[20] S.P. Georgiadis, The Integration of Process Design and Control, Elsevier Science,
2004.

[21] J.A. Vázquez-Castillo, J.G. Segovia-Hernández, J.M. Ponce-Ortega,
Multiobjective optimization approach for integrating design and control in
multicomponent distillation sequences, Ind. Eng. Chem. Res. 54 (2015) 12320–
12330, http://dx.doi.org/10.1021/acs.iecr.5b01611.

[22] J.G. Segovia-Hernández, A. Bonilla-Petriciolet, L.I. Salcedo-Estrada, Dynamic
analysis of thermally coupled distillation sequences with undirectional flows
for the separation of ternary mixtures, Korean J. Chem. Eng. 23 (2006) 689–
698, http://dx.doi.org/10.1007/BF02705913.

[23] E.M. Green, Fermentative production of butanol-the industrial perspective,
Curr. Opin. Biotechnol. 22 (2011) 337–343, http://dx.doi.org/10.1016/
j.copbio.2011.02.004.

[24] B. Rong, I. Turunen, Process intensification for systematic synthesis of new
distillation systems with less than N-1 columns, Comp. Aided Chem. Eng.
(2006) 1009–1014, http://dx.doi.org/10.1016/S1570-7946(06)80178-1.

[25] J.A. Vazquez-Castillo, J.A. Venegas-Sánchez, J.G. Segovia-Hernández, H.
Hernández-Escoto, S. Hernández, C. Gutiérrez-Antonio, et al., Design and
optimization, using genetic algorithms, of intensified distillation systems for a
class of quaternary mixtures, Comput Chem Eng 33 (2009) 1841–1850, http://
dx.doi.org/10.1016/j.compchemeng.2009.04.011.

[26] A.B. Van Der Merwe, H. Cheng, J.F. Görgens, J.H. Knoetze, Comparison of energy
efficiency and economics of process designs for biobutanol production from
sugarcane molasses, Fuel 105 (2013) 451–458, http://dx.doi.org/10.1016/
j.fuel.2012.06.058.

[27] A. Chapeaux, L.D. Simoni, T.S. Ronan, M.A. Stadtherr, J.F. Brennecke, Extraction
of alcohols from water with 1-hexyl-3-methylimidazolium bis
(trifluoromethylsulfonyl)imide, Green Chem. 10 (2008) 1301, http://dx.doi.
org/10.1039/b807675h.

[28] M. Wu, J. Wang, J. Liu, H. Huo, Life-cycle assessment of corn-based butanol as a
potential transportation fuel, Argonne Natl. Lab. (2007) 59. doi:10.2172/
925379.

[29] S. Skogestad, K. Havre, The use of RGA and condition number as robustness
measures, Comput. Chem. Eng. 20 (1996) S1005–S1010, http://dx.doi.org/
10.1016/0098-1354(96)00175-5.

[30] Youngwoon Kwon, Sup Yoon, A method for improving condition number of
chemical processes by sensitivity analysis, Comput. Chem. Eng. 20 (1996),
http://dx.doi.org/10.1016/0098-1354(96)00148-2.

[31] K.M. Guthrie, Capital cost estimating, Chem. Eng. 114 (1969).
[32] G.D. Ulrich, in: A Guide to Chemical Engineering Process Design and

Economics, Wiley, 1984, p. 22901.
[33] R. Turton, R.C. Bailie, W.B. Whiting, J.A. Shaeiwitz, in: Analysis, Synthesis and

Design of Chemical Process, 2001, http://dx.doi.org/10.1002/1521-3773
(20010316)40:6<9823::AID-ANIE9823>3.3.CO;2-C.

[34] W.L. Luyben, in: Principles and Case Studies of Simultaneous Design, John
Wiley & Sons, Inc., Hoboken, NJ, USA, 2011, http://dx.doi.org/10.1002/
9781118001653.
[35] C.S. Bildea, R. Gyorgy, E. Sánchez-Ramírez, J.J. Quiroz-Ramírez, J.G. Segovia-
Hernandez, A.A. Kiss, Optimal design and plantwide control of novel processes
for di-n-pentyl ether production, J. Chem. Technol. Biotechnol. 90 (2015) 992–
1001, http://dx.doi.org/10.1002/jctb.4683.

[36] M. Goedkoop, R. Spriensma, Eco-indicator 99 Manual for Designers, PRé
Consult Amersfoort, Netherlands, 2000.

[37] C. Moore, Application of singular value decomposition to the design, analysis,
and control of industrial processes, Am. Control Conf. (1986) 643–650.

[38] V.C. Klema, A.J. Laub, The singular value decomposition: its computation and
some applications, IEEE Trans. Automat. Contr. 25 (1980) 164–176, http://dx.
doi.org/10.1109/TAC.1980.1102314.

[39] G.R. Salehi, M. Amidpour, K. Hassanzadeh, M.R. Omidkhah, Controllability
analysis of heat integrated distillation systems for a multicomponent stream,
Comput. Chem. Eng. 36 (2012) 282–293, http://dx.doi.org/10.1016/
j.compchemeng.2011.09.017.

[40] A. Górak, Z. Olujic, Distillation: equipment and processes, 2014.
[41] L. Yiqing, Y. Xigang, L. Yongjian, An improved PSO algorithm for solving non-

convex NLP/MINLP problems with equality constraints, Comput. Chem. Eng.
31 (2007) 153–162, http://dx.doi.org/10.1016/j.compchemeng.2006.05.016.

[42] M. Errico, E. Sanchez-Ramirez, J.J. Quiroz-Ramìrez, J.G. Segovia-Hernandez, B.-
G. Rong, Synthesis and design of new hybrid configurations for biobutanol
purification, Comput. Chem. Eng. 84 (2016) 482–492, http://dx.doi.org/
10.1016/j.compchemeng.2015.10.009.

[43] H.A. Abbass, R. Sarker, C. Newton, in: PDE: a Pareto – frontier Differential
Evolution Approach for Multi-objective Optimization Problems, 1999, http://
dx.doi.org/10.1109/CEC.2001.934295.

[44] R. Storn, in: Differential Evolution – a Simple and Efficient Heuristic for Global
Optimization over Continuous Spaces, 1997, pp. 341–359, http://dx.doi.org/
10.1023/A:1008202821328.

[45] N.K. Madavan, M. Field, Multiobjective Optimization Using a Pareto
Differential Evolution Approach NASA Ames Research Center, Moffett Field,
CA United States, 1145–50.

[46] F. Glover, Tabu search—Part I, ORSA J. Comput. 1 (1989) 190–206, http://dx.
doi.org/10.1287/ijoc.1.3.190.

[47] S. Das, P.N. Suganthan, Differential evolution: a survey of the state-of-the-art,
IEEE Trans. Evol. Comput. 15 (2011) 4–31, http://dx.doi.org/10.1109/
TEVC.2010.2059031.

[48] S. Sharma, G.P. Rangaiah, A hybrid multi-objective optimization algorithm, in:
5th International Symposium on Design, Operation, and Control of Chemical
Processes, 2010, pp. 1494–1503.

[49] M. Srinivas, G.P. Rangaiah, Differential evolution with tabu list for solving
nonlinear and mixed-integer nonlinear programming problems, Ind. Eng.
Chem. Res. 46 (2007) 7126–7135, http://dx.doi.org/10.1021/ie070007q.

[50] M. Martínez-Iranzo, J.M. Herrero, J. Sanchis, X. Blasco, S. García-Nieto, Applied
Pareto multi-objective optimization by stochastic solvers, Eng. Appl. Artif.
Intell. 22 (2009) 455–465, http://dx.doi.org/10.1016/j.engappai.2008.10.018.

[51] A.A. Kiss, C.S. Bildea, A control perspective on process intensification in
dividing-wall columns, Chem. Eng. Process Process Intensif. 50 (2011) 281–
292, http://dx.doi.org/10.1016/j.cep.2011.01.011.

[52] E. Lucero-Robles, F.I. Gómez-Castro, C. Ramírez-Márquez, J.G. Segovia-
Hernández, Petlyuk columns in multicomponent distillation trains: effect of
their location on the separation of hydrocarbon mixtures, Chem. Eng. Technol.
(2016), http://dx.doi.org/10.1002/ceat.201600152.

[53] M.M. Donahue, B.J. Roach, J.J. Downs, T. Blevins, M. Baldea, R.B. Eldridge,
Dividing wall column control: common practices and key findings, Chem. Eng.
Process Process Intensif. 107 (2016) 106–115, http://dx.doi.org/10.1016/
j.cep.2016.05.013.

[54] M. Baldea, From process integration to process intensification, Comput. Chem.
Eng. 81 (2015) 1–11, http://dx.doi.org/10.1016/j.compchemeng.2015.03.011.

[55] J.G. Segovia-Hernández, E.A. Hernández-Vargas, J.A. Márquez-Muñoz, Control
properties of thermally coupled distillation sequences for different operating
conditions, Comput. Chem. Eng. 31 (2007) 867–874, http://dx.doi.org/10.1016/
j.compchemeng.2006.08.004.

http://dx.doi.org/10.1007/s10098-015-1024-8
http://dx.doi.org/10.1016/j.ifacol.2015.08.179<!--Q4:PleasecheckthejournaltitleinRefs.[15,24,48].-->
http://dx.doi.org/10.1016/j.ifacol.2015.08.179<!--Q4:PleasecheckthejournaltitleinRefs.[15,24,48].-->
http://refhub.elsevier.com/S1383-5866(17)30082-5/h0080
http://refhub.elsevier.com/S1383-5866(17)30082-5/h0080
http://dx.doi.org/10.1016/0009-2509(82)80159-0
http://refhub.elsevier.com/S1383-5866(17)30082-5/h0090
http://refhub.elsevier.com/S1383-5866(17)30082-5/h0090
http://dx.doi.org/10.1016/0098-1354(94)E0013-D
http://refhub.elsevier.com/S1383-5866(17)30082-5/h0100
http://refhub.elsevier.com/S1383-5866(17)30082-5/h0100
http://refhub.elsevier.com/S1383-5866(17)30082-5/h0100
http://dx.doi.org/10.1021/acs.iecr.5b01611
http://dx.doi.org/10.1007/BF02705913
http://dx.doi.org/10.1016/j.copbio.2011.02.004
http://dx.doi.org/10.1016/j.copbio.2011.02.004
http://dx.doi.org/10.1016/S1570-7946(06)80178-1
http://dx.doi.org/10.1016/j.compchemeng.2009.04.011
http://dx.doi.org/10.1016/j.compchemeng.2009.04.011
http://dx.doi.org/10.1016/j.fuel.2012.06.058
http://dx.doi.org/10.1016/j.fuel.2012.06.058
http://dx.doi.org/10.1039/b807675h
http://dx.doi.org/10.1039/b807675h
http://dx.doi.org/10.1016/0098-1354(96)00175-5
http://dx.doi.org/10.1016/0098-1354(96)00175-5
http://dx.doi.org/10.1016/0098-1354(96)00148-2
http://refhub.elsevier.com/S1383-5866(17)30082-5/h0155
http://refhub.elsevier.com/S1383-5866(17)30082-5/h0160
http://refhub.elsevier.com/S1383-5866(17)30082-5/h0160
http://refhub.elsevier.com/S1383-5866(17)30082-5/h0160
http://dx.doi.org/10.1002/1521-3773(20010316)40:6&lt;9823::AID-ANIE9823&gt;3.3.CO;2-C<!--Q5:PleasechecktheauthorgroupinRef.[33]andcorrectifnecessary.-->
http://dx.doi.org/10.1002/1521-3773(20010316)40:6&lt;9823::AID-ANIE9823&gt;3.3.CO;2-C<!--Q5:PleasechecktheauthorgroupinRef.[33]andcorrectifnecessary.-->
http://dx.doi.org/10.1002/9781118001653
http://dx.doi.org/10.1002/9781118001653
http://dx.doi.org/10.1002/jctb.4683
http://refhub.elsevier.com/S1383-5866(17)30082-5/h0180
http://refhub.elsevier.com/S1383-5866(17)30082-5/h0180
http://refhub.elsevier.com/S1383-5866(17)30082-5/h0180
http://refhub.elsevier.com/S1383-5866(17)30082-5/h0185
http://refhub.elsevier.com/S1383-5866(17)30082-5/h0185
http://dx.doi.org/10.1109/TAC.1980.1102314
http://dx.doi.org/10.1109/TAC.1980.1102314
http://dx.doi.org/10.1016/j.compchemeng.2011.09.017
http://dx.doi.org/10.1016/j.compchemeng.2011.09.017
http://dx.doi.org/10.1016/j.compchemeng.2006.05.016
http://dx.doi.org/10.1016/j.compchemeng.2015.10.009
http://dx.doi.org/10.1016/j.compchemeng.2015.10.009
http://dx.doi.org/10.1109/CEC.2001.934295
http://dx.doi.org/10.1109/CEC.2001.934295
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1287/ijoc.1.3.190
http://dx.doi.org/10.1287/ijoc.1.3.190
http://dx.doi.org/10.1109/TEVC.2010.2059031
http://dx.doi.org/10.1109/TEVC.2010.2059031
http://refhub.elsevier.com/S1383-5866(17)30082-5/h0240
http://refhub.elsevier.com/S1383-5866(17)30082-5/h0240
http://refhub.elsevier.com/S1383-5866(17)30082-5/h0240
http://refhub.elsevier.com/S1383-5866(17)30082-5/h0240
http://dx.doi.org/10.1021/ie070007q
http://dx.doi.org/10.1016/j.engappai.2008.10.018
http://dx.doi.org/10.1016/j.cep.2011.01.011
http://dx.doi.org/10.1002/ceat.201600152
http://dx.doi.org/10.1016/j.cep.2016.05.013
http://dx.doi.org/10.1016/j.cep.2016.05.013
http://dx.doi.org/10.1016/j.compchemeng.2015.03.011
http://dx.doi.org/10.1016/j.compchemeng.2006.08.004
http://dx.doi.org/10.1016/j.compchemeng.2006.08.004

	Optimal hybrid separations for intensified downstream processing of biobutanol
	1 Introduction
	2 Problem statement
	3 Case-study description
	4 Optimization indexes and formulation
	4.1 Total annual cost calculation
	4.2 Environmental impact calculation
	4.3 Controllability index calculation
	4.4 Multi-objective optimization problem

	5 Global optimization methodology
	6 Results and discussion
	7 Conclusions
	References


